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A theoretical and experimental investigation is reported dealing with the onset of 
buckling in a horizontal layer of highly viscous liquid. The layer floats on a heavier 
liquid with negligible viscosity, and a t  rest is stabilized by gravity and surface 
tension. When sheared a t  a sufficient rate, the flat configuration of the layer becomes 
unstable ; and the aim of the investigation is to establish the relation between critical 
values of the shearing rate and values of the layer’s thickness and other physical 
parameters. 

A primitive theory based on membrane approximations is first reviewed and its 
deficiencies are appreciated. Then a more reliable theory is developed, providing 
estimates of values taken by a dimensionless shear stress f a t  the threshold of 
instability. The values f, are found to depend primarily on a dimensionless number 
H proportional to the thickness of the layer. 

Experiments on sheared layers of silicone oil with various high viscosities are then 
described. Measured values off, plotted against H over a wide range are shown to be 
in satisfactory agreement with the theory. Finally, discrepancies between previous 
experimental results and ours are discussed. 

1. Introduction 
Layers of highly viscous liquid are well known to develop buckling instabilities 

when compressed or sheared in their plane a t  sufficient rates. This paper presents a 
theoretical and experimental examination of conditions for the onset of buckling in 
a horizontal layer of viscous liquid subject to pure shearing, whose destabilizing 
effect is opposed by gravity and surface tension. The agreement established between 
theory and experiment is more satisfactory than achieved in previous investigations, 
notably that by Suleiman & Munson (1981). 

Most inquiries into this subject over recent years have acknowledged the stimulus 
of a short article by Taylor (1969) which reported various experiments, although 
earlier antecedents include theoretical studies by Ramberg (1963)’ Biot (1964) and 
others which were directed towards geophysical applications. It will be of particular 
interest at  present to recall one of Taylor’s demonstrations (1969, figures 15-17) in 
which a distinctive form of buckling appeared as an instability phenomenon in a 
sheared annular layer of viscous liquid (golden syrup with-a viscosity of about 40 P). 
A simple theoretical interpretation based on membrane approximations was cited by 
Taylor, and it appeared to account for certain of his observations. The simple theory 
is defective, however, and in $ 2  it will be outlined in order to prepare the way for a 
more reliable theory presented in $3. Incidentally, a t  the end of $ 2 ,  the likely 
explanation for Taylor’s observations will be noted, in support of which some 
experiments made soon after and matching his will be reported for the first time. 
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Since Taylor’s focal contribution, viscous buckling under compression has been 

studied theoretically by several authors, among whom Buckmaster & Nachman 
(1978) included surface tension in their model and Wollkind & Alexander (1982) 
allowed for both surface tension and gravity in theirs. Although primarily intended 
to illuminate the geological phenomenon of rock-folding, the theoretical work by the 
latter authors came closest in substance to our theory in $3. Because of various 
differences in formulation, their results are not adaptable securely to the present 
problem. It is notable, however, that they were the first to demonstrate an optimal 
dimensionless thickness, a t  which the dimensionless loading sufficient to buckle a 
viscous layer is an absolute minimum (1982, Fig. 5).  A comparable property will be 
found in $ 3  and borne out by our experimental findings presented in $5. 

Suleiman & Munson (1981) have reported extensive experiments with an apparatus 
t,hat was t,he same in principle as Taylor’s and ours. They studied a variety of highly 
viscous liquids floated on various heavier, comparatively inviscid liquids, and they 
tried a moderately wide range of layer thicknesses. They also measured the relation 
between angular speed of the rotated boundary and torque exerted on the opposite 
boundary, using the change in the slope of this relation as an indicator of incipient 
buckling. The simple theory suggested by Taylor (1969) was cited by them in a brief 
theoretical appraisal, but they acknowledged its failure to explain their experimental 
observations. In  particular, they noted that measured critical values of the shear 
stress 7 could be correlated well by the dimensionless ratio 7/ (gp2 T);, where pz is the 
density of the supporting liquid and T the net surface tension, this correlation being 
conspicuously better than by  layer thickness)/T as indicated by the simple 
theory. 

In  $ 3.4, confirming Suleiman & Munson’s empirical discovery, the dimensionless 
shear stress f = 7/ (gp2T) i  will be shown theoret>ically to be the decisive parameter for 
buckling. Critical values f, off will be calculated as a function of the dimensionless 
ratio H = Bh(gp,/T)i, where 2h is the thickness of the sheared layer. Our experimental 
results report,ed in $5  agree closely with the predicted relation off, to H ,  but’ a 
particularly sensitive method for the detection of incipient buckling was needed to 
establish the agreement. Our measurements off, do not agree with Suleiman & 
Munson’s, however, being typically 50 YO of theirs. The discrcpancy will be discussed 
in $6. 

2. Theory based on membrane approximations 
The simple theory cited by Taylor (1969) and Suleiman & Munson (1981) deserves 

to be summarized, for i t  exposes requirements to  be met by the more accurate 
theory that will be presented in $3. As far as we are aware, an explicit account of the 
simple theory has not been given before, and its apparent success in explaining 
Taylor’s experimental observations has yet to be explained properly. 

The model in question can be appreciated as an immediate adaptation of well- 
known results for thin elastic plates perturbed from a planar state (see Timoshenko 
19.10, $58). For a plate of uniform thickness 2h composed of elastic material with 
Young’s modulus E and Poisson’s ratio 11, the bending stiffness (flexural rigidity) is 
given by B = 2Eh3/3 ( l  - v 2 )  (Timoshenko 1940, p. 3).  If the material is incom- 
pressible, one has 1’ = and E = 3G, where (1! is the modulus of rigidity; hence 
B = (!)Oh3. This result shows a t  once how the equation expressing the equilibrium 
of an infinitesimally perturbed elastic plate (Timoshenko 1940, p. 301) is adaptablc 
to the case of a thin layer composed of incompressible liquid with viscosity p .  
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Because the supporting analysis is precisely analogous, the only change is that B in 
the original equation is replaced by the operation balat with 

b = $h3, (1) 

Thus, taking Cartesian coordinates (x, y)  in the plane of the unperturbed layer, 
writing [(x, y, f )  for its infinitesimal displacement perpendicular to this plane, and 
supposing the layer to support direct-stress resultants N,, Ny ,  a shear-stress 
resultant Nxy (i.e. net forces per unit span in the plane of the unperturbed layer) and 
a lateral external load q per unit area, we infer the equation 

(cf. Timoshenko 1940, p. 301, equation (175)). Here A denotes the Laplacian operator 

Let us assume the layer to suffer no compression nor stretching, so that N, and 
Nu both reduce to a positive constant T which is the sum of the surface tensions on 
the upper and lower surfaces of the layer. The layer is taken to undergo shearing in 
its plane, however, say a t  a rate S = S(x ,  y) ; and so the shear stress pS acting over 
the thickness 2h amounts to Nzy = 2pSh. Next, assuming the layer of viscous liquid 
with density p1 to  float on a liquid with density pz > p1 and negligible viscosity, we 
deduce that q = - gp2 6. (This conclusion recognizes that the effects of gravity on 
flexural deformations of the layer appear only through the hydrostatic variation of 
pressure on the lower side of the interface between the two liquids ; for, according to 
the approximations implicit in (a), the thickness of the layer is invariant.) Thus (2) 
becomes 

a: + a;. 

(3) 

which linear partial differential equation for [ is the crux of the simple theory. 
A local criterion of stability can be deduced plausibly from (3) as follows, without 

reference to boundary and initial conditions which would be needed for a complete 
description of possible motions. Taking a: and p to be real numbers, consider 

= a( t )  cos(ax-/ly+const.) (4) 

as the generic Fourier component in a representation of [ valid over a region of the 
(x, y)-plane wherein S is approximately constant. Write k = (a2++p2); > 0 and 
8 = arctan (pla:). Then substitution of (4) into (3) gives a t  once 

1 da - (2pSh sin 28 - T) k2 - gp2 
a dt bk4 

- _ _  

Buckling instability is indicated by exponential growth of the amplitude a ,  as occurs 
when the right side of ( 5 )  is positive for some real values of k and 8. If S > 0, 
maximum growth evidently requires sin 28 = 1 : that is, 0 = in or p = a:, and the 
waveform (4) then has its lines of constant phase a t  45" to the x-axis, parallel to the 
diagonal line y = x. If S < 0, maximum growth requires a: = -p, and so the lines of 
constant phase are parallel to y = -x. Accordingly, the general condition of 
instability is 

2plXl h > T ,  
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which means INJ > T :  and when (6) is satisfied, the waveform with maximum 
growth is shown by (5) to have wavelength A, = 27c/k, given by 

A, = 7c { 3(2pISI h - T ) }  
YP2 

(7)  

Kote that A, is indefinitely small when the instability condition (6) is just 
satisfied. 

The simple theory thus predicts that  incipient buckling in a thin viscous layer 
undergoing shear should appear as ripples with extremely small wavelengths and 
crests inclined a t  45" to the direction of the primary motion. The small A, result 
supports the contention that a local criterion suffices without regard to boundary 
conditions. On the other hand, this result grossly violates the condition k ,  h < 1 
which would justify the membrane approximations underlying (3) .  The theoretical 
predictions are not self-consistent, therefore, and it can be expected that the result 
(6) generally underestirnates the value of 1x1 needed for buckling. This deficiency was 
noted by Suleiman & Munson (1981, p. 5) in comparing their experimental results 
with the (implicit) suggestion by Taylor (1969) that  (6) might be the criterion of 
buckling instability. Although they did not propose a rational improvement upon 
(6). they found that the empirical criterion mentioned in $ 1  gave a much better 
correlation of their results. The theory in $ 3  is freed from membrane approximations, 
so avoiding the inconsistent estimate (7) for A, and providing a more reliable 
estimate of the buckling condition. 

It is noteworthy, however, that Taylor (1969, p. 388) recorded experimental 
observations in apparent agreement with the simple theory. A horizontal disk of 
55 mm diameter was partly immersed in a layer of golden syrup, 10 mm deep, 
floating on carbon tetrachloride contained in a vessel of 150 mm diameter. As the 
disk was rotated the surface of the syrup was observed to remain flat until the 
angular speed was raised to 0.37 r.p.s. At this speed, ripples appeared in the surface 
close to the rim of the disk, where the shearing rate imposed on the syrup was largest; 
their crests were inclined at 45" to the rim and their wavelength was extremely small. 
The possibility of a skin with some rigidity having formed was mentioned by Taylor ; 
but he noted as counter-evidence that the surface flattened leaving no sign of the 
wave pattern in a few seconds after the rotation had been stopped. He wisely added, 
'It may well be that some surface viscosity is present.' 

This suggestion was convincingly confirmed by some simple tests made by one of 
us many years ago. Annular lagers of golden syrup were observed under shearing in 
an apparatus much the same as Taylor's (1969, figures 15-17). When the apparatus 
had been left closed over the top for a day or more, no buckling could be induced in 
the form reported by Taylor. On the other hand, when the apparatus had been left 
open for a comparable time, the surface could be crinkled into tiny ripples by 
moderate rates of shearing, however deep the layer of syrup. Presumably the 
exposure to dry air in the second case had allowed water to evaporate from the 
surface of the syrup, leaving a skin of more concentrated, nearly crystalline sugar 
which buckled more or less independently of the less viscous liquid below. In  
prolonged contact with saturated air in the closed apparatus, the surface evidently 
lost any such skin. 
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3. Improved theory 
The aim is to  estimate the condition for the onset of buckling more reliably than 

by the simple theory, for comparison with the experimental results presented later. 
As before, we consider a layer of thickness 2h composed of liquid with density p 1  and 
largc viscosity p, which floats on a liquid with density p 2  > pl. The second liquid is 
taken to be immiscible with the first, so that the interface has a positive surface 
tension T,, and the upper surface of the viscous liquid is taken to be free with surface 
tension Tl. The motion is assumed to be slow enough and the viscosity of the second 
liquid small enough for hydrodynamic effects in it to be negligible. 

Take axes (x, y, z )  with origin at  the centre of the layer and z vertical upwards, so 
that the upper horizontal surface of the undisturbed layer is described by z = h and 
the lower by z = - h. The layer is taken to be sheared a t  a rate S > 0, which will be 
treated as a constant, and so the primary motion can be represented by 

(u, v ,  w) = (Xy, 0,O). (8) 

The stability of this motion is to be examined on the assumption that p is large 
enough for inertial effects to be negligible ; specifically, p z  Sh2/p 4 1. 

In the perturbed motion the upper and lower surfaces of the viscous layer are 
described respectively by 

where Cl and C, are infinitesimal. Focusing on a generic Fourier component of the 
perturbation, we consider 

Ci = e,(t) cos{a(z-Syt)-poy) 

with 

= si(t)  cos (ax-py) (i = 1 , 2 ) ,  

p = p,+axt. 

Here a is a real constant, but /3 is a real function of time t ,  likewise k = (a2++P2)i > 
0 and 6' = arctan (p/a). As illustrated in figure 1,  lines of constant phase in the waves 
described by (10) and (1 1) are rotated by the primary motion, remaining coincident 
with the same liquid particles. The advantage of this representation is that the 
linearized kinematic conditions a t  the two surfaces, namely 

reduce to ei = 2;(fy) (i = 1,2) ,  (12) 

w = 2;(kz) cos (ax--py). (13) 

In  (12) ii denotes de,/dt, and this pair of equations will be the only place in the 
formulation where time-derivatives occur. Thus, in the solution of the hydrodynamic 
equations that follows, the time-dependent quantities /3, Ic and 6' can be treated as if 
they were constant parameters. 

with y = kh, when the vertical velocity w is written 
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0 X 

FIGURE 1. Definition sketch illustrating evolution of lines of constant phase in the horizontal 
(z, y)-plane. 

3.1 . D ynamical equations 
In terms of the velocity vector u = (u, v, w )  and p* = p+gp, x ,  where p is pressure, 
the equations of motion for an incompressible Newtonian liquid without inertia 
are 

pAu = V p " ,  (14) 

8 . u  = 0, (15) 

where A G az+ai+az.  Because of (15), taking the divergence of (14) shows that 

Ap" = 0, 

whence (14) also implies that  A2u = 0, in particular 

A2w = 0. (17) 

It will be convenient to formulate the boundary-value problem in terms of w as 
expressed by (13). The horizontal velocity components u and v, which too are 
biharmonic functions of (x, y, z ) ,  are not needed explicitly. Corresponding to the 
expression (13) for w, they can be seen from (15) to be both proportional to d'(kz) 
sin (ax-Py)  ; but their respective amplitudes depend on the tangential-stress 
conditions at  the upper and lower boundaries (cf. (20) below) as well as on (15). 

The general solution of (17)  in the form (13) has 

.Zi, = AcosZ+BZsinhZ+CcoshZ+DZsinhZ, (18) 

where Z = kz and A ,  B, C, D are constants or functions of time alone. Note that the 
terms with coefficients A and B are even in x ,  so representing a vertical displacement 
of the layer as a whole, whereas the terms with coeficients C and D are odd in z and 
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so represent a thickening or contraction of the layer. Writing p* = $*(Z) 
cos ( m - / 3 y ) ,  we find at once from (18) and the z-component of (14) that 

1;* = 2pL(B sinhZ+ D coshZ), (19) 

and thus p* is confirmed to satisfy (16). 

3.8. Boundary conditions 
In addition to the kinematic conditions (18), linearized boundary conditions 
referring to tangential and normal stress will complete the determination of the 
solution in the form (10). Write rii for the stress tensor, noting that in the primary 
state its only non-zero components are 7,, = 721 = ,US and 733 = g p , ( z - h ) .  For the 
perturbed motion, the components include rI3  = p(u, + w,) and r23 = p(v2 + toy). To 
first order in infinitesimals, the upwardly directed unit normal to either of the 
surfaces (9) is given by n = ( - c,, - &, l),  where 5 denotes 5, or 5, respectively. These 
surfaces are assumed to be free, supporting no tangential component of stress; thus 
r i jn , j  evaluated a t  either surface is required to have no tangential component, or 
equivalently 

for all 2: = 1 , 2 , 3 .  Using the facts just noted, we find that to first order this condition 

r . .n . - r .  n.n n.  = 0 
2 1 1  J k J k z  

reduces to 
u,, + 1 0 ,  = sty, 21, + UlY = sy,, (80) 

where the partial derivatives of the velocities are evaluated a t  z = f h and 5 denotes 
5, or 6, respcctively. 

The elimination of u and 21 by cross-differentiation of (20) and use of (15) gives 

UlZX + UlYY - w,, = 2s5,:,,, 

whence substitution of (13) for w and (10) for 6 leads to the pair of boundary 
conditions for z$(Z) 

?if( * y )  + ti)( * y )  = (2sap/k2)  F ,  

= (Xsin20)ct (i = 1,2) .  (21) 

(Recall that  y = LA.) Putting the general solution (18) for 16 into (21) and writing for 
short c = cosh y ,  s = sinh y ,  we obtain 

Ac + B (c + ys) f [Cs + D (s + ye)] = a(# sin 20) q,  

the addition and subtraction of which gives 

BC + B(C + ys) = f(8 sin M)&, 

Cs + D(s + y c )  = f(8 sin 20) 7, 
( 2 2 )  

with [ = L( 2 E l + &  7 = f ( C 1 - E 2 ) .  

To express normal-stress conditions, linearized approximations to the curvatures 
of the surfaces (9) are used. Thus, allowing for the normal-stress discontinuity due to 
surface tension, we have to first order 

p-2pw,  = - T , ( a ~ + a ~ ) < ,  = k2T,5, 

a t  =. = h + <,, and accordingly 
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a t  z = h. Hence the substitution of (13) for w, (18) for Zi, and 
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(19) for 1;* leads to 

(23) 

The pressure on the lower side of the interface z = - h+C2 is accountable as 
hydrostatic pressure in the heavier liquid beneath, so being given by 2ghpl -gpz Q. 
We therefore have 

and substitution for w and p* as before leads to 

P"-2PW, = -k7(P,-Pl)+k2Tz~cz~ 

Addition and subtraction of (23) and (24) give 

AS+BYC = -Q&-Rr,I 
C ~ + D ~ S  = - R ~ - - & ~ , J  

in which 

and 

Finally, let us substitute (18) for Zi, into the kinematic conditions (12), which thus 
provide 

3.3.  Equations for f and 7 
The coefficients A ,  B,  C, D can be found in terms of 6 
equations ( 2 2 )  and (25). Thus (26) is reducible to 
differential equations for [ ( t )  and ~ ( t ) .  The result is 

B = allf+alz7>\ 

= az15-taz27J 

and 7 by solution of the four 
a linear system of ordinary 

with 
- &!3 sin 28 - czQ 

(28) 

, a12 =---- 
sc-y s c - y '  a11 - 

s2R iyS sin 28 + szQ 
7 a22 = - azl = - - 

sc+y sc+ y 

These four coefficients are all complicated functions oft. But, as will be discussed 
below, plausible conclusions about the stability of the sheared layer can be based on 
a study of instantaneous values of the coefficients for given k and 6. First, however, 
the following simple checks on ( 2 7 )  and (28 )  deserve to be noted. 

(i) To cover the case of a very deep layer, take the limit y-f co. The direct effect 
of S on ( 2 7 )  disappears in the limit, which reduces the system to 

& =  - & f - R y ,  4 = -Rf-&r .  
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Because [+q = E ,  and g-7 = e2 ,  the reduced system is equivalent to the uncoupled 

These results correctly demonstrate the damping rates for waves on the upper free 
surface and for waves on the lower interface (cf. Lamb 1932, p. 628). As obviously to 
be expected, it is confirmed that in the limit the two classes of waves are independent 
and the respective damping rates depend on k but not on 8. Note, however, that a 
purely kinematic effect of shearing is still demonstrated because the preceding results 
are valid with k = {a2+ 

(ii) Take the case y < 1, for which sc-y = $y3 and sc+y = 2y.  As first 
approximations for small y ,  we have 

a,, = 3 (+s sin 28 - Q )  2?3 

gP 
8ph3k2 k2 2phS sinO-L-(T,+T,) - -"( 

aZ2 = -i(S sin28+2yQ) 

and a12a2, = 3R2/4y2 4 a;,. 
In view of the last inequality and because la221 <  all^ outside a narrow range of k and 
8 where a,, is exceptionally small, a good general estimate of the highest eigenvalue 
of aij is just a,, in the present case. Thus (29) recovers the result ( 5 )  for growth rate 
according to the simple theory, which we have shown in $ 2  to be suspect because the 
supposition y 6 1 is inconsistent with the choice of k maximizing the expression 

(iii) Take Q = R = 0, in which case the perturbed layer suffers no restoring force. 
According to (27) and (28), the modes and 7 are then uncoupled, as can be expected 
from considerations of symmetry. Assuming S > 0, we have that g/[ > 0 but q/7 < 0 
when 0 < 8 < in. That is, when 0 < $ < in ,  where $ = in-O is the angle between 
the x-axis and constant-phase lines (see figure l ) ,  waves of bending are amplified (i.e. 
the layer buckles) but waves of successive thickening and thinning are damped. 
Conversely, when an < $ < n, we have (16 < 0 but q/r  > 0. Thus waves of thickening 
and thinning are amplified in this case, although their rate of growth -+(yS sin 2$)/ 
(sc+y) > 0 is comparatively small if y is small. All these conclusions accord with 
intuition. 

If y < 1, first approximations to the differential equations for 5 and 7 with 

(29). 

Q = R = 0 are 
3 = -;s sin 28, 

( - 3s sin28 
- 

6- 4Y2 ' 7 
which can easily be solved. Recalling ( l l ) ,  consider 

r = tan8 = cot$ = P/a = rO+Xt, 

whence y = Eh = ah( 1 + 7 2 ) ;  = ah{ 1 + (To +St)Z)i, 

- 2(r0 +St) - 
27 

sin28 = - 
1+7*  l + ( T O + X t ) 2 '  
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Here 70 is short for 7(0), which may take any real value. After substitution of these 
expressions into the right sides of (30), the solutions are found to be respectively 

These solutions remain good approximations to the solutions of the exact linear 
problems only while y remains small. Eventually, when the phase-lines are rotated 
to become nearly enough parallel with the x-axis, the underlying assumption y + 1 
is violated. 

Our general conclusions are borne out conspicuously by (31) and (32).  If 70 < 0 (i.e. 
the phase-lines initially point in a direction between north and west in figure l) ,  6 is 
shown to decrease rapidly and 9 to increase much more slowly during the interval 
[0, -7,JX). A t  t = -70/S, when the phase-lines point northward, 6 is a minimum and 
7 a maximum. Thereafter 5 rapidly increases and 7 slowly decreases. 

(It should be acknowledged that, as a putative approximation for y < 1, the 
differential equation = a,, 6 with a,, expressed by (29) can be solved explicitly 
without difficulty. For the reasons explained in $ 2 ,  however, such an approximation 
is misleading as regards the stability problem, and therefore we pass over the 
solution. ) 

3.4. Conditions for instability 
Typically y is fairly small, so that lall\ % laz21 and \a1J + laz1) in ( 2 7 ) .  Therefore a 
simple estimate of the buckling condition is that  a,, > 0 for some y and 0.  Because 
all is largest for 8 = an, the estimated condition amounts to S > X,, where according 
to the first of (28) 

8, = 2 min ( c2&/y ) ,  
Y 

that is, 
S,  = - 1 min ?++;) cosh2 y .  

2p Y 
(33) 

(Here T is written for T, +T,.) In  terms of the dimensionless measures of shear stress 
and layer thickness 

the buckling condition becomes f > f, with 

f = p+X/(gp,T)i, H = 2h(gpz/T)4 (34) 

Y 
(35)  

Although plainly a great improvement on the primitive resultf, = 1 / H  represented 
in (6), the expression (35)  is a slight overestimate off,, to be corrected below. Kote 
the tentative but plausible basis of the estimate (35) .  We reason that when in practice 
f > f, and (27)  has a solution 6 growing comparatively rapidly for 0 near an and y near 
the minimizer of the expression ( 3 5 ) ,  then buckling should appear locally provided 
thc lateral (horizontal) extent of the layer is great enough for boundary conditions 
a t  its edges to be unimportant. 

Treating the matrix on the right side of (27)  as constant, we note that the system 
then has two solutions in the form 
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, ='( 2 ~11+a ,2~[ (~11- -a , , )2+4a i ,a , i~ '~ .  
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where the A, ( i  = 1 ,2 ) .  the eigenvalues of the matrix, are given by 

A condition of marginal stability is indicated by one of the A, vanishing, that is, 

111 = a,, aZ2 -al2 u21 = 0, 

which on substitution from (2s) and canccllation of a factor (sZc2--y2)-' > 0 gives 

by 

-$(yS sin20)'+$Q(yS sin20)-s2c2(Q2-R2) = 0. (36) 

The positive root of (36) is 

yS sin20 = [ Q z + + s 2 ~ 2 ( Q 2 - R 2 ) ] ~ + Q  

= Q{ (cosh2 27 - r2 sinh2 2y)k + l}, 

where r = R/Q < 1 .  Hence the critical value off ,  above which ( 2 7 )  has a rapidly 
growing solution for 0 near an, is found to be given by 

{(eosh22y-r2 sinh22y)i+ l}. 
Y 

( 3 7 )  

Note that ( 3 7 )  reduces to (35)  in the case r = 0, but for 0 < r < 1 the value off, 
given by ( 3 7 )  is the smaller. As will be shown in $ 5 ,  however, estimates off, based 
on ( 3 7 )  with experimental parameter values are little different from estimates based 
on ( 3 5 ) .  

It remains to confirm that ( 2 7 )  has a rapidly growing solution when f > f , ,  with 
f c  given by (37). First, however, we should note that the negative root of (36) is 

yS sin 20 = - [Q2 + 4s2c2(Q2 - R2)]fr+ Q 

= -Q{(cosh22y-r2sinh22y)~- l}, 

whence it appears that ( 2 7 )  has a growing solution for 0 near -an when f > f ; ,  
where 

f; = t inf (& -+- t) {(cosh22y-r2 sinh22y$- 1). (38 )  
Y 

The infimum specified here is approached in the limit y+0.  In  keeping with the 
discussion in $3.3 (iii), the disturbances thus indicated to grow when f > f ;  are long 
waves of thickening and thinning, whose growth rates are presumably small 
compared with the buckling mode that grows when f > f c .  

To exhibit this essential difference, let us consider the exponent A, that  becomes 
positive when M < 0 and work out its rate of increase with f above f, and f ;  
respectively. Because each exponent A, satisfies h2- (all + a2,) A +M = 0, we have 

Also, by differentiation of (36), we have 
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where Q = ,uQ/(gpnT) i ,  and from (28) 
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[P/(gPz T)tI (all + a’’), = -(Qc(y+ s3c + sc3) -r”f,>l(s2c2 - y 2 ) .  

Hence, respective to thc buckling valuef, given by (37), the result is 

in which y should be given its value minimizing the right-hand side of (37). Because 
the denominator of (39) is O(y’) as y+O, the quotient takes large values when y is 
fairly small. 

In  contrast, the corresponding result respective to the critical condition given by 
(38) is 

(40) 
$(cosh2 2y- r2 sinh2 2y)i (3) = (4y)-’ sinh 4y+ (cosh’ 2y- r2 sinh2 27);’ 

which takes its largest value a in the limit y --f 0 relevant to (38). For any y ,  the right 
side of (39) is larger than the right side of (40), greatly so when y is small. Although 
a secondary, non-buckling instability is indicated when f >A, which condition is 
generally satisfied well below the buckling condition (37), growth rates for the 
amplified waves of thickening and thinning seem to be too small for the waves to be 
discernible in practice. Such waves were not noticed in the experiments. 

4. Experimental apparatus 
The apparatus is illustrated in figure 2. In  it layers of highly viscous liquid were 

observed in shearing motion between the rim of a rotating circular disk made of 
aluminium, 20 mm thick, and the concentric inner wall of a circular cylindrical 
container made of Perspex. A steel shaft passing centrally through the disk and fixed 
to it was supported by two bearings, one in the base of the container and the other 
in the lid, which was removable but tightly fitting. The disk was rotated at constant 
angular speed SZ by a d.c. motor coupled to the shaft through a 50 : 1 reduction gear. 
Stabilized by feedback control of the motor, the speed was continuously adjustable 
over a wide range. 

The rim of the rotating disk had radius R, = 14050.1 mm, and the inner wall of 
the container had radius R, = 185&0.1 mm. Thus the width of the annular gap 
between the moving rim and the stationary wall was 45 mm, which we judged large 
enough for menisci to have insignificant effects on the liquid surfaces spanning the 
annulus. 

With the axis of symmetry carefully adjusted to  be vertical, the container was 
filled with distilled water to a level just above the lower edge of the aluminium disk. 
Silicone oil, having specific gravity 0.978, was then gently poured onto the water 
surface to float as an annular layer with its inner edge on the rim of the disk and its 
outer edge on the wall of the container. Each experimental run taking several days 
was begun with the layer of silicone oil a t  its thickest. After the critical speed for 
buckling a t  this thickness had been measured, a small quantity of the oil was 
removed and eventually, when the thinner layer had fully settled into a uniform 
state, the second measurement of critical speed was made. This procedure was 
repeated many times until the layer became so thin that it was ruptured in the 
attempt to remove more of the oil. Settling times typically as long as 24 hrs were 
allowed after each reduction of the oil layer, and they were found sufficient for the 
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\ I  Oil layer 

\ I  - 
FIGURE 2 .  Schematic cross-section of apparatus. 

disappearance of any air or water bubbles that happened to be entrained in the 
layer. 

The thickness 2h of the layer was measured by means of a depth gauge controlled 
by a micrometer, which moved a fine needle vertically through the layer. Observed 
through a microscope, contact between the point of the needle and either the upper 
surface or the interface with the water below could be discerned confidently. The 
measurements of 2h in this way were estimated to be accurate within k0.04 mm. 

In dealing with capillary effects on the stability of a sheared layer of viscous liquid, 
our theory has revealed the primary importance of the sum T = T,+T2, where TI is 
the surface-tension coefficient for the upper interface between the oil and air and 
7; that for the lower interface between the oil and water. Adopting a good 
approximation explained by Davies & Rideal (1961, p. 31) to apply generally to 
immiscible liquids, which was also adopted by Suleiman & Munson (1981, p. 2 ) ,  we 
assume T, = TL-TI and hence T = TL, where Ti  is the surface tension of water 
exposed to air. Thus we take T = 72.8 dyn/cm ( = 72.8 mN/m), the value of surface 
tension for water a t  20 "C. 

On the assumptions that the annular layer of highly viscous liquid is uniform and 
that hydrodynamic effects in the water below it are negligible, its circumferential 
velocity V varies with radius r according to 

The shear stress in the layer is therefore -,US with 

dV V 2QR;Ri 
dr r (R i -R; ) r2 '  

s = --+- = 

The largest value of X, at  r = R,, is given by 
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(b) 
FIGURE 3 .  Photographs of sheared layer from above: ( a )  a t  critical angular velocity; ( b )  at 

angular velocity 10 YO greater than critical. 
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which formula will be used to reduce the observed critical values of 52; and the least 
value of S ,  taken a t  the outer edge r = R,, is (R,/R2)2 = 0.573 times S,. The change 
in S across the gap is thus large enough for the first signs of buckling to be expected 
distinctly near to the inner edge of the layer. 

Three silicone oils were used in the experiments, having viscosities p = 10000, 
30770 and 64000 cP measured by a Sangymo Weston rheogoniometer. This 
instrument was also used to estimate non-Newtonian effects in the liquids, specifically 
to measure normal-stress differences caused by simple shearing. At shearing rates 
typical of our experiments, such effects were checked to be insignificant in the first 
two, less viscous oils. They were significant in the oil with viscosity 64000 cP, 
however, being directly observable in our apparatus as a thickening of the sheared 
layer a t  its inner edge: that is, Weissenberg effects were noticeable. 

5. Experimental results 
Having been left long enough to sett>le into its uniform horizontal configuration, 

a layer of silicone oil was observed to remain featureless until the speed 52 of the 
rotat,ing disk was raised to a critical value Q,, which depended on the layer's 
thickness 2h and viscosity p. At t'he crit>ical speed ripples appeared close to the rim 
of the disk. wit>h crests inclined a t  approximately 45" to the circular paths of the 
liquid particles. When 52 was raised to 5% or more above fie, the ripples became 
much more prominent ; both their amplitude and their radial extent increased 
steadily with 52-52, > 0, and the angle between their crests and the particle paths 
fell progressively further below 45". Photographs showing a layer just a t  and well 
abovc the critical condition are presented in figure 3. 

The onset of buckling was difficult to detect' by direct observation, and to refine 
the estimates of 52, the following method was adopted. The layer of silicone oil was 
illuminated from below by diffused light, and an image of it's upper surface was 
projected onto t'he ceiling. In  a darkened room, the first appearance of a regular 
patt>ern of shadows in the image was found to be a sensitive indicator of incipient 
buckling. 

For each layer with a particular thickness 2h and viscosity p ,  the speed 52 was 
increased in small steps until ripples were detected. We then repeated the procedure 
taking finer steps to approach the critical value 52,. The estimate was checked several 
times, both by gradual increase in 52 from below and by gradual decreases from 
above. No hysteresis was discovered, and the measurements of 0, were found to be 
repeatable within about 1 YO in successive experiments from day to day. 

Results for the silicone oils with viscosities 10100 and 30770 cP are presented in 
figures 4 and 5 .  Estimated critical values of the dimensionless shear stress f = pS/ 
(gp2T)i (cf. (34) in §3.4), with S evaluat>ed by subsbituting measurements of 52, in 
(41), are plotted against dimensionless thickness H = 2h(gp,/T)i. Theoretical curves 
off, versus H according to (35) and (37) are also shown. The curve according to (37), 
drawn dashed in figure 4, was found by use of the value 33.8 dyn/cm given by the 
manufacturer for the surface tension of the silicone oil (TI is needed to evaluate the 
coefficient r in (37)) ; and except a t  the highest values of H this curve can be seen to 
be practically the same as that according to (35). As demonstrated by figures 4 and 
5, the agreement between theory and experiment is sat'isfactory. In  particular, the 
prediction that the critical shear stress has a minimum as a function of H is borne out 
plainly by these experimental results. 

Corresponding results for the silicone oil with viscosity 64000 cY are presented in 
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FIGIJRE 4. Mpasured critical values off = pLS/(gp,T)i plotted against H = 3h(gp2/T)a, for silicone oil 
with viscosity 10000 cP. Theoretical prediction is continuous cwve according to (Xi), dashed curve 
according to (37).  
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FIOL-RE 5. Measured critical values off plotted against H ,  for silicone oil with 
viscosity 30770 cP. 

figure 6. Although the experimental points with the three smallest values of H 
happen to be remarkably close to the theoretical curve, the overall comparison 
between theory and experiment is much less satisfactory than in figures 4 and 5. 
Experimental points in the range 0.4 < H < 0.9 lie around 60% higher than the 
theoretical curve, which includes the minimumf, = 2.2, approximately, at H = 0.77.  
The lack of agreement is attributable to the Weissenberg effects that were otherwise 
conspicuous in the experiments with the oil of highest viscosity. The observed 
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FIGURE 6. Measured critical values off plotted against H ,  for silicone oil with 

viscosity 61000 cP. 

thickening of the sheared layer a t  its inner edge, which implies thinning of the layer 
elsewhere, is a complication presumably sufficient to invalidate the present 
theoretical model. (Attempts by us to allow theoretically for non-Newtonian effects 
and so account better for the experimental results in figure 6 have been inconclusive, 
and we judge them to be not worth recording here.) 

6.  Discussion 
It deserves emphasis that the measurements presented in figures 4-6 depended on 

a sensitive means of detecting the incipience of buckling. For the liquids with high 
viscosities yet free from significant non-Newtonian behaviour, a reasonably close 
agreement was thereby found between the observed thresholds of buckling and the 
predictions of the theory developed in $3.  Our experience during the experiments 
showed, moreover, that distinctly higher values off, might well have been noted if 
we had relied on direct observation or on records of some gross property of the 
buckled layers. 

The theoretical estimates (35) or (37) thus appear to be reliable predictions of the 
stability limit for a sheared layer, and the revealed dependence off, on H is the most 

I X  FLI1 111.5 
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interesting conclusion of the theory. When only marginally satisfied, however, the 
instability condition f > f , ( H )  does not imply that the layer will be prominently 
distorted by buckling ; rather, the predicted waves will gradually become stronger as 
f is raised above f,(H). The experimental results at least confirm that the results of 
the new theory are more dependable than the estimate f, = 1/H given by the 
rudimentary theory reviewed in 5 2 .  

It remains to recognize that our experimental results differ substantially from 
those of Suleiman & Munson (1981), who used measurements of torque to detect 
buckling. On the basis of experiments using silicone oils with viscosities 9700, 29000 
and 98 000 CP and three different underlying liquids of comparatively negligible 
viscosity, they proposed f > 4.1 as a universal condition of buckling for thin layers. 
The critical value 4.1 estimated by them is almost twice the mean level off, in figures 
4 and 5 over the range 0.3 < H < 0.8, which appears to cover their experiments with 
water as the underlying liquid. Also, their experiments evidently missed the striking 
rise in f ,  that  both our theory and our experiments show to occur a t  smaller values 
of H. The importance of the non-dimensional form f for the shear stress was amply 
demonstrated by Suleiman & Munson's paper, but their measurements of critical 
values f, seem to relate to a subsequent stage in the development of buckling, not to 
the onset of wave motion. Although there is some uncertainty about the actual 
values of the two surface tensions, it seems unlikely to  account for the differences 
between their experimental results and ours : the same value of T = TI + T2 was in fact' 
used by them. Our experiments apparently realized comparative advantages from a 
much wider annular gap, which reduced complicating effects due to menisci, from a 
more sensitive means of detection and from a greater range of layer thicknesses. 
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